On forbidden submatrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On linear forbidden submatrices

In this paper we study the extremal problem of finding how many 1 entries an n by n 0-1 matrix can have if it does not contain certain forbidden patterns as submatrices. We call the number of 1 entries of a 0-1 matrix its weight. The extremal function of a pattern is the maximum weight of an n by n 0-1 matrix that does not contain this pattern as a submatrix. We call a pattern (a 0-1 matrix) li...

متن کامل

Avoiding Forbidden Submatrices by Row Deletions

We initiate a systematic study of the Row Deletion(B) problem on matrices: For a fixed “forbidden submatrix” B, the question is, given an input matrix A (both A and B have entries chosen from a finite-size alphabet), to remove a minimum number of rows such that A has no submatrix which is equivalent to a row or column permutation of B. An application of this question can be found, e.g., in the ...

متن کامل

Forbidden Submatrices: Some New Bounds and Constructions

We explore an extremal hypergraph problem for which both the vertices and edges are ordered. Given a hypergraph F (not necessarily simple), we consider how many edges a simple hypergraph (no repeated edges) on m vertices can have while forbidding F as a subhypergraph where both hypergraphs have fixed vertex and edge orderings. A hypergraph of n edges on m vertices can be encoded as an m × n (0,...

متن کامل

Complex Orthogonal Designs with Forbidden 2 × 2 Submatrices

Complex orthogonal designs (CODs) are used to construct space-time block codes. COD Oz with parameter [p, n, k] is a p × n matrix, where nonzero entries are filled by ±zi or ±z ∗ i , i = 1, 2, . . . , k, such that O H z Oz = (|z1| 2 + |z2| 2 + . . . + |zk| )In×n. Define Oz an M-type COD if and only if Oz does not contain submatrix (

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2015

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2014.11.007